Geometri Non Euclid

Deskripsi

Geometri yang pertama-tama muncul sebagai suatu sistem deduktif adalah Geometri dari Euclides. Kira-kira tahun 330 SM, Euclides menulis buku sebanyak 13 buah. Dalam bukunya yang pertama Euclid menjelaskan mengenai definisi, postulat, aksioma dan dalil. Namun Geomerti Euclid ini memiliki kelemahan, salah satu kelemahanya ada pada postulat kelima dari Euclid 2 yang terkenal dengan Postulat Parallel atau Postulat Kesejajaran yang terlalu panjang sehingga merisaukan para matematikawan. Sehingga beberapa matematikawan menganggap bahwa postulat kelima Euclid bukan postulat dan dapat dibuktikan dengan keempat postulat yang lain. Usaha untuk membuktikan postulat kelima ini berlangsung sejak Euclid masih hidup sampai kira-kira tahun 1820. Tokoh yang berusaha membuktikan ini antara lain Proclus dari Aleksandria (410 – 485) Girolamo Saccheri dari Italia (1607 – 1733), Karl Friedrich Gauss dari Jerman (1777 – 1855), Wolfgang (Farkas) Bolyai dari Hongaria (1775 – 1856), dan anaknya Yanos Bolyai (1802 – 18060) dan juga Nicolai Ivanoviteh Lobachevsky (1793 – 1856).

Postulat kesejajaran kelima Euclid adalah sebagai berikut: “ Jika suatu garis lurus memotong dua garis lurus dan membuat sudut-sudut dalam sepihak kurang dari dua sudut siku-siku, kedua garis itu jika diperpanjang tak terbatas, akan bertemu dipihak tempat kedua sudut dalam sepihak kurang dari sudut siku-siku

Gambar 1. Ilustrasi postulat ke lima

 Pada gambar 1 garis c memotong garis a dan garis b yang mengakibatkan sudut 1 dan sudut 2 kurang dari 180°, garis a dan garis b akan bepotongan pada pihak sudut yang kurang dari 180°, yang pada gambar adalah perpanjangan yang ke kanan.

Postulat kelima ini masih sukar diterima dan dipahami maka beberapa matematikawan berusaha untuk membuktikan dan menggantikannya dengan postulat yang ekuivalen. Salah satu postulat yang paling terkenal dan sederhana adalah Aksioma Playfair oleh John Playfair yang bunyinya: “Hanya ada satu garis sejajar (parallel) pada garis yang melalui titik bukan pada garis tersebut”

Matematikawan lain, yaitu Proclus yang menulis komentar dari The Elements yang menyebutkan usaha pembuktian untuk menyimpulkan dari postulat kelima. Proclus kemudian memberikan bukti sendiri, dan memberikan postulat yang ekuivalen dengan postulat kesejajaran “Jika suatu garis lurus memotong salah satu dari dua garis parallel ia juga akan memotong yang lain, dan garis-garis lurus yang parallel dengan suatu garis lurus yang sama, adalah parallel satu sama lain”. Sedangkan John Wallis menggantikan postulat kesejajaran Euclid dengan postulat Wallis. John Wallis menyerah mencoba membuktikan dalil paralel dalam Geometri Netral. Sebaliknya, ia mengusulkan sebuah postulat baru, yang ia merasa lebih masuk akal daripada postulat kelima Euclid.

Geometri Non Euclid timbul karena para matematikawan berusaha untuk membuktikan postulat kelima dari Euclides. Sehingga Geometri Non Euclid masih berdasarkan empat postulat pertama dari Euclides dan hanya berbeda pada 4 postulat kelimanya. Ada dua macam Geometri Non Euclid yang pertama adalah ditemukan hampir bersamaan oleh 3 tokoh berlainan dan masing-masing bekerja sendiri-sendiri. Tokoh-tokoh tersebut adalah Karl Friedrich Gauss dari Jerman, Yonos Bolyai dari Hongaria, dan Nicolai Ivanovitch Lobachevsky dari Rusia, Geometri ini disebut Geometri Hiperbolik atau Geometri Lobachevsky. Geometri Non Euclid yang kedua adalah Geometri yang diketemukan oleh G.F.B. Bernhard Riemann dari Jerman, Geometri ini disebut Geometri Eliptik atau Geometri Riemann.

Untuk lebih lengkap silakan Download >>>> DOCX dan PPTX

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s