Postulat Euclid – Play Fair

Deskripsi

Geometri Euclides sering disebut juga geometri parabolik, yaitu geometri yang mengikuti satu himpunan proposisi yang didasarkan pada lima postulat Euclid yang telah didefinisikan dalam bukunya The Elements. Lebih khusus, geometri Euclid berbeda dari jenis geometri lain dalam dalil kelima, sering disebut dengaan postulat paralel. Non-Euclidean geometri menggantikan postulat kelima ini dengan salah satu dari dua alternatif postulat dan mengarah ke geometri hiperbolik atau geometri eliptik. Ada dua jenis geometri Euclidean: geometri bidang, yang merupakan dimensi Euclidean geometri-dua, dan geometri padat, yang merupakan dimensi Euclidean geometri-tiga.

Lima postulat Euclid dapat dinyatakan sebagai berikut :

  1. Hal ini dimungkinkan untuk menggambar segmen garis lurus bergabung dengan dua titik.
  2. Hal ini dimungkinkan untuk selamanya memperpanjang himpunaniap segmen garis lurus secara terus menerus dalam garis lurus.
  3. Mengingat himpunaniap segmen garis lurus, adalah mungkin untuk menggambarlingkaran memiliki segmen sebagai jari-jari dan satu titik akhir sebagai pusatnya.
  4. Semua sudut kanan sama satu sama lain atau kongruen.
  5. Jika dua garis yang ditarik sehingga mereka berpotongan sepertiga sedemikian rupa sehingga jumlah dari sudut interior pada satu sisi kurang dari dua sudut yang tepat, maka mereka dua baris, jika diperpanjang cukup jauh, harus berpotongan satu sama lain pada sisi tertentu.

 Dalil kelima dikenal sebagai postulat paralel. Paralel ini menyatakan bahwa postulat diberikan himpunan tiap segmen garis lurus dan titik tidak bahwa segmen garis, ada satu dan hanya satu garis lurus yang melewati titik itu dan tidak pernah memotong baris pertama, tidak peduli seberapa jauh segmen garis yang diperpanjang. Meskipun kelima postulat Euclid tidak dapat dibuktikan sebagai teorema, selama bertahun-tahun banyak bukti diklaim diterbitkan. Banyak usaha yang ditujukan untuk merumuskan teorema untuk mendalilkan ini karena diperlukan untuk membuktikan hasil penting dan itu tidak tampak sebagai intuitif sebagai dalil-dalil lainnya. Lebih dari dua ribu tahun penelitian dalil kelima ditemukan untuk menjadi independen dari empat lainnya. Ini adalah postulat kelima ini yang harus terus untuk geometri untuk dipertimbangkan Euclidean.

Untuk lebih lengkap silakan Download >>>> HERE!!!

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s